High Temperature Characterizations for GaN-based LED Devices

Graduate School & International Education Microelectronics-Photonics

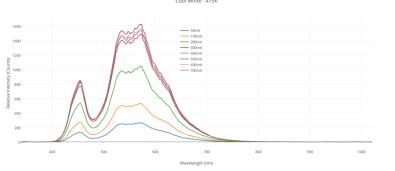
Mentor: Dr. Zhong Chen (ELEG)

Nanoscience

Microelectronics Un Background/Relevance

 LEDs are manufactured in a way that the cooler the environment, the higher the light output will be.

Student: Camara N. Johnson


- Commercial LEDs that are currently on the market can only withstand temperature up to 425K (~150°C), and uses bulky heat sink to bring down the temperature to get high efficiency.
- GaN-based LEDs however can withstand higher temperatures (>650K) which makes them more ideal.

Innovation

 GaN LEDs will be used in power modules to control circuits for harsh environment applications such as: space applications, automotive industry, deep drilling machines, petroleum excavation, etc.

Key Results

- High temperature testing proved that GaN LEDs can withstand high temperature without efficiency droop.
- Collected data shows that the intensity of peak wavelength decreases with temperature as expected.

Approach

Undergraduate School / Major: Hampton University / Electrical Engr

- High temperature vacuum test environment is created using MMR hall effect chamber
- Bias the LED with different forward biased current and collect light output using a Spectrometer
- Repeat the measurements for different temperatures varying from room temperature to 475 \mbox{K}
- Study the changes in peak wavelength and intensity at high temperatures

Experimental setup

Top view of LED connected to cryostat

Conclusions

GaN LEDs provide improved performance over traditional LEDs for applications requiring high temperatures; more experiments needed.

Acknowledgements to Dr. Zhong Chen and Syam Madhusoodhanan for their support and assistance.

Research Funded by National Science Foundation REU Grant # EEC-1359306 Summer 2016