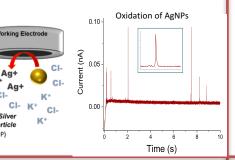
Investigating the Electrochemical Behavior of Silver Nanoparticles at Short Time Scales

& International Education Microelectronics-Photonics

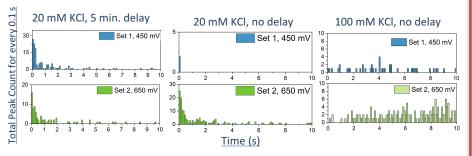

Student: Moriah York Faculty Advisor: Dr. Ingrid Fritsch (CHBC) Nanoscience & Engineering Undergrad. School / Major: Southern Arkansas Univ. / Engineering

Background/Relevance

- Surge of consumer products containing silver nanoparticles (AgNP).
- Necessity to develop methods that monitor real time changes of AgNP in different solutions.

Innovation

 Study the effect of electrolyte concentration on the frequency of electrochemical reactions between AgNP and electrode.

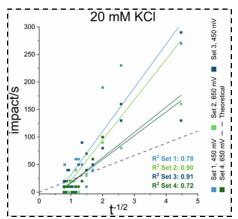


Key Results

• For lower electrolyte concentrations, the oxidation frequency was greater for the first few seconds and for higher electrolyte concentration, the oxidation frequency was overall steady.

(ΔσNP

• Equilibration period of AgNP in electrolyte solution was needed before oxidation could be observed.



Approach

- Polish electrode and characterization with cyclic voltammetry to ensure absence of AgNPs.
- Prepare electrolyte and AgNP solution and allow equilibration (soak) time before inserting electrodes or not (no soak).
- Perform four sets of ten (10 s) CAs at varying potentials to observe the occurrence of particle oxidations at the electrode.
- Analyze the frequency of the particle oxidation peaks and the effects of the soaking time and varying electrolyte concentrations and equilibration time.
- Confirm above studies by performing additional studies with various electrolyte and particle concentrations.

Conclusions

- The results of the experiments attempted to fit a model, the Cottrell equation to the initial oxidation frequency behaviour.
- Further studies are required to vary electrolyte and particle concentrations and to fit a model that accurately accounts for the electrolyte and kinetics of the system.

Research funded by National Science Foundation REU Grant # EEC-1922719 REU Site: Tomorrow's Nanomanufacturing: Engineering with Science (TNEWS).