Biosensors developed for detection of gram-negative bacterial species

Student: Rudy R. Acosta Major Professor: Dr. Z. Ryan Tian

Physical & Chemical Sensors

Background/Relevance

- Current methods in the market for bacteria detection are time. consuming, expensive, user unfriendly, and likely to produce false negative/positive results more often than desired.
- Compact and inexpensive bacterial sensors have been longoverdue to industry, homeland security, and clinics.

Innovation

By modifying the radio frequency identification (RFID) tags, various bacterial strains can be identified by monitoring the RFID signals in real-time and single-cell sensitivity at low-cost.

Approach

- Deposit rGO-TiO₂/polymer nanocomposite thin films • (sensing layer) on the surface of an RFID tag's hot spot.
- Using the modified tag to detect the bacteria at various • concentrations.
- Integrating the tag with a custom-made flow cell for detecting ٠ bacteria e.g. bacillus B (see below)

Key Results

- As shown below, there is a linear correlation between the tag's impedance and number of bacterial cells
- Our new sensory nanocomposites made the tag able to show different signals for every bacterium at various concentrations.

Conclusions and Future work.

Degree: M.S., July 2021

- Bacteria appear to have their characteristic impedance and frequency patterns when interacting with the RFID sensor.
- Further testing will be conducted to further improving the ٠ detection of bacterial cells in a flow cell.

Graduate School & International Education Microelectronics-Photonics

Biological Materials & Processes