NSF/EEC 1757979 **REU Site:** Tomorrow's Nanomanufacturing: **Engineering with** Science (TNEWS)

Determination of Energy Band-Offsets of Ga_2O_3 for Device Modeling

UNIVERSITY OF ARKANSAS **Graduate School** & International Education Microelectronics-Photonics

Microelectronics

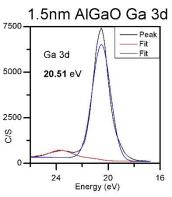
Student: Justin Rudie Faculty Advisor: M. Ware, G. Salamo

Undergrad. School / Major: Mankato State University/ Electrical Engr.

Photonics

Background/Relevance

- Gallium Oxide is a large bandgap material that is of interest for use in high power applications
- Silicon is being replaced with materials more suited for use as semi-conductors such as Gallium Nitride. Certain figures of merit show Ga_2O_3 to be ~4000 times more suitable than Si.


Innovation

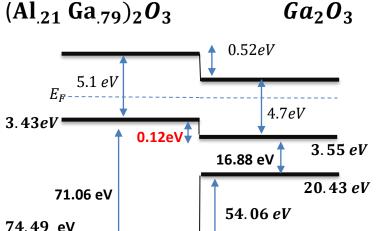
- Collaboration with industry partner Agnitron allows for quantity and quality of samples necessary for extensive data collection.
- Measurements on multiple instruments (XPS, AFM, Shimadzu) increases confidence in results

Approach

- X-ray photoelectron spectroscopy (XPS) directly measures core level energies of elements
- Valance band maximum (VBM) energy levels found by linear extrapolation of valance band edge.
- Valance band offset (VBO) is calculated from core level energies and VBM energies:

$$\Delta E_V = (E_{Al2pCL}^{AlGaO}(i) - E_{Ga3dCL}^{GaO}(i)) + (E_{Ga3dCL}^{GaO} - E_V^{AlGaO}) - (E_{Al2pCl}^{AlGaO} - E_V^{AlGaO})$$

Ga 3d energy peak of AlGaO measured by XPS


Key Results

Measured energy peak positions (avg. at bottom):

Ga 3d	Al 2p	Ga 3d(i)	Al 2p(i)	GaO VBM	AlGaO VBM
20.38 eV	74.75 eV	20.34 eV	74.38 eV	3.45 eV	3.75 eV
20.36 eV	74.76 eV	20.51 eV	74.60 eV	3.53 eV	3.65 eV
20.37 eV	74.76 eV	20.43 eV	74.49 eV	3.49 eV	3.70 eV

Conclusions

$$(Al_{.21} Ga_{.79})_2 O_3$$

With the available data the VBO was determined to be 0.12 eV.

Confidence in this value still needs to be accurately determined.