

specific simulation

Dataset for SERS Plasmonic Array: Width, Spacing, and Thin Film Oxide thickness optimization

Graduate School & International Education Microelectronics-Photonics

Photonics

Modeling and Simulation Undergrad. School / Majo			or: Missouri State / Physics	Photonics
Bac • Inn •	kground/Relevance Previously, Dr. Herzog a several works regarding Other researchers have should yield similar res ovation Publish our data and m DATA to allow other res Make our data available with computer modelir MATLAB.	nd his research group have published g plasmonics in Au nanostructures. published computational work that ults but have gotten discrepancies. ethods in the open-access MDPI Journal searchers to verify and validate our work. e in a universal format that can be tested bg software other than COMSOL, such as	 Methods Computationally model an array of Au nanowires on an SiO₂ substrate with various parameters. Perform with COMSOL, a physics modelling software using finite element method (FEM). Vary the widths of the nanowires (w), the spacings between the wires (s), and the depths of the SiO₂ (t_{SiO2}) and analyze plasmonic enhancement for each variation Export data into plaintext text files to make accessible to researchers without COMSOL. 	Air s/2 y sio_ - 2D model of array Au sio_ - 2D model of array Au Au Au Au Au Au Au Au Au Au
•	 Differing values of <i>s</i> and <i>w</i> at the nanoscale provide varying degrees of plasmonic enhancement. There exist parameter combinations that provide strong plasmonic enhancement at values previously unstudied. Periodic values of t_{SiO2} provide periodic amounts of plasmonic enhancement, apparently irrelevant to the rest of the structure. 		 Stronger than expected plasmonic interference occurs in nanowires spaced greater than 100 nm apart, an area of plasmonics that has not been investigated much. This can possibly be utilized for creating substrates for surface-enhanced Raman Spectroscopy (SERS). The data can be evaluated in other modelling softwares to allow for accurate validation by fellow computational modelling researchers. 	
			Ahmad Darweesh, Stephen Bauman, and Faezia Tork Lada	ani for their

- Variations of plasmonic effects - Optical enhancement of a between two values of t_{SiO2}

Student: Chris Klenke

guidance and help. Research Funded by National Science Foundation REU Grant EEC 1757979 Summer 2018

Faculty Advisor: Dr. Joseph Herzog