Functionalizing CVD Graphene using SDS to Enable Deposition of Nanoparticles

Student: Brad Martsching
Faculty Advisor: Dr. Uche Wejinya (MEEG)

Undergrad. School / Major: Arkansas Tech Univ./ Electrical Engr. Nanoscience \& Engineering

Background/Relevance

- Graphene is a 2-D carbon allotrope with a one-atom thick planar sheet of sp^{2}-bonded carbon atoms that are densely packed in a honeycomb crystal lattice structure.
- Graphene's has many intrinsic properties, such as electric conductivity and mechanical strength.

Innovation

- In order to maintain Graphene's intrinsic properties we Functionalize it with a non-covalant surfactant SDS allowing for the deposition of nanoparticles.
- Allowing for the creation of a more sensitive hydrogen sensor.

Key Results

- Figure 2a and Figure 2b show 3D models of the earlier presented AFM images before and after SDS.
- A careful study of many of the graphene samples indicates that the samples have heights of the order of micro-meters as opposed to subnanometer.

Figure 2a

Figure 2b

Figure 1c

Approach

- We used AFM imaging to compare topographical images of graphene samples from "Company A" before (figure 1a) and after (Figure 1b) functionalization.
- To functionalize the graphene we used Sodium

Figure 1a Dodecyl Sulfate of 1% concentration by weight for 1 hour.

- We also used Raman Spectroscopy on the graphene sample before SDS (Figure1c).

Figure 1b

Conclusions

- The Raman Spectroscopy (Figure 1c) indicates that there are impurities in the graphene.
- Figure 3a and Figure 3b show AFM image and 3D

Figure 3a model of new samples from "Company B"

- Switching to samples from "Company B" we determined that we are ready to functionalize them and add nanoparticles.

Figure 3b
I would like to thank Abayomi, Dr. Wejinya, and Dr. Salamo for their continued guidance in this research effort. This project was supported through NSF/EEC grant 1757979 in partnership with Tomorrow's Nanomanufacturing: Engineering with Science(TNEWS) research for undergraduates.

