Programmable Controls for a Cardiac Pulsatile Flow Pump

Student: Ryan J. Plemmons Faculty Advisor: Dr. Morten Jensen (BME)				
Microelectronics Undergrad. School / Majo			or: Hendrix College/ Physics Biological Materials & Processes	
 Background Pulsatile heart to Pulsatile at least \$ Innovation Utilize a low cost Allow for pulses ar 	Relevance oumps can be used to recreated pulse patterns of llow research into cardiovascular flow patterns. oumps on the market are very expensive and ca 250,000. tepper motor and Pulse Width Modulation to cr pulsatile pump. more accurate control of the pump to input diff d simulate a variety of situations.	of the n cost reate a ferent	 Approach Create a polynomial equation from data of heartbeat pressures. Evaluate the polynomial over a time step and a number of interpolations. Calculate the values of the polynomial at each timestep. Produce a duty cycle for Pulse Width Modulation for each value calculated. Input the series of Pulse Width Modulations to a pump to simulate heart beats. Projected Pump Design 	
 (ey Results An array is built in order to calculate the appropriate time steps based on input from the user. The program also calculates the values at each timestep based on the polynomial that was calculated. The array of polynomial values is then transformed into duty cycle values to input into Pulse Width Modulation. The program can potentially run the Pulse Width Modulation within itself, or it can send the data out to a different program for 		steps • ased ity ion ram for	 Conclusions The LabVIEW program can successfully take a flow pressure plot generated by a heart beat and return an array of values to be transformed into information for pulse width modulation. The cost of manufacturing the in-lab pump is much less expensive and easily within budget for the lab. Acknowledgements to Dr. Morten Jensen, Sam Stephens for their support and assistance. Research Funded by National Science Foundation REU Grant: NSF/EEC 1757979 REU Site: Tomorrow's Nanomanufacturing: Engineering with Science (TNEWS) 	
more cont	-Time and polynomial value arrays code			