Design, Fabrication and Measurement of a Plasmonic Enhanced Terahertz Photoconductive Antenna Student: Nathan M. Burford Degree: Ph.D., December 2016 Major Professor: Dr. Magda El-Shenawee Photoconductive Antenna	
 Background/Relevance Conventional pulsed THz photoconductive antennas suffer from poor optical-to-THz conversion efficiency. High output THz sources are needed for the practical implementation of various imaging applications. Innovation Design a THz photoconductive antenna with plasmonic electrodes to enhance the device performance using novel computational methods. Fabricate and test the device and compare to current best in literature. 	 Approach MBE growth of Al_{0.9}Ga_{0.1}As etch stop layer (200 nm) and Low Temperature GaAs active layer (120 nm) on GaAs substrate. Photolithography patterning of THz bowtie antennas Lapping/selective etching for removal of GaAs substrate and Al_{0.9}Ga_{0.1}As etch stop. Electron beam lithography of Au nanodisk arrays Mounting to Si focusing lens + wire boding/device packaging Measurement of average THz power vs. optical pump power and position, bias voltage, electrode configuration.
 Key Results Demonstrated x10² higher peak photocurrent over current best in literature. Fabricated plasmonic thin-film THz antenna devices. Preliminary experimental results show agreement in enhancement trends predicted by the model. 	 Conclusions THz photoconductive antennas with top-located, ultrathin photoconductive layers computationally demonstrate record high optical-to-terahertz conversion efficiency Electron beam lithography effectively produces plasmonic nanodisk arrays to further enhance the device performance Thin-film plasmonic THz photoconductive antennas successfully fabricated Spectral characterization shows 4.8 times higher THz field emission from the fabricated plasmonic thin-film device as compared to the fabricated conventional device. Acknowledgements: NSF I-Corps #1548550, University of Arkansas DAF and ERISF Programs