Investigation of Optical Properties of PbSe/PbX Core/Shell Nanocrystals

Graduate School & International Education Microelectronics-Photonics

Student: Haley Morris Degree: M.S., December 2016

Background/Relevance

 PbSe is a useful material for detection in the infrared, but oxidation reduces the functionality of the material in device applications.

Innovation

 Utilize WIEN2k, a program that performs electronic structure calculations, to model PbSe, and PbSe/PbS core/shell nanocrystals.

Approach

- Model PbSe nanocrystals with different shells and of various sizes using WIEN2k.
- Synthesize the material using a wet chemical method.
- Optimize the shell growth procedures.
- Characterize the nanocrystal structures through TEM imaging, absorbance, and photoluminescence measurements.

Absorbance and photoluminescence of PbSe/PbS nanocrystals grown at 120°C for 15 min.

Key Results

- Modeling PbSe in WIEN2k.
- Successful wet chemical synthesis of PbSe nanocrystals.
- Successful PbSe/PbS core/shell synthesis procedure.
- Absorbance and photoluminescence measurements

Absorbance and photoluminescence of PbSe nanocrystals grown at 140°C for 20s.

Conclusions

- Oxidation of PbSe nanocrystals incorporated into a photodetector degrades the performance of the device, and necessitates a shielding of some sort.
- The PbS shell provides protection for the PbSe core. The addition of the shell also red shifts the absorbance and emission spectra.

Future Work

 Another possible variation is an alloyed shell where the shell is composed of a ratio of lead sulfide and lead selenide, PbSe/PbSe_xPbS_{1-x}.