Optimization of Miniaturized Resonant Microwave Cavities for Use in Q-Thrusters

Student: Josh Pennington
Degree: M.S., August 2017
Major Professor: Dr. Adam Huang

Graduate School
\& International Education
Microelectronics-Photonics

Approach

- Model Q-thruster cavities and driving antennas in COMSOL to build an understanding of electrical and thermal effects and their possible contribution to real world experimental error.
- Develop a Q-thruster module for use on a CubeSat.
- Construct a sensitive torsion pendulum that

Fig. 2: A COMSOL mesh model of a Q-thruster. can measure force in the $\mu \mathrm{N}$ range.

- Use the force pendulum and Q-thruster to investigate physical theories governing the behavior of Q -thrusters.

Conclusions

- Industry review of available miniaturized RF equipment has been completed.
- Necessary RF equipment has been designed and modeled in COMSOL including: Resonant cavity, micropatch antennas, and dielectric inserts.

Future Work

- Construct a sensitive torsion pendulum.
- Construct a Q-thruster.
- Use coupled Q-thrusters to investigate the current theory of operation.

