Characterization of Coupled Gold Nanoparticles

in a Sparsely Populated Square Lattice

Student: Roy T. French III

550

650

Wavelength [nm]

750

Nanoscience & Engineering

Degree: M.S., May 2017 Major Professor: Dr. D. Keith Roper

Graduate School & International Education Microelectronics-Photonics

Photonics

 Approach Polydimethylsiloxane (PDMS) base was combined with a hydrophilic block copolymer to make hydrophilic PDMS-PEO stamps with cavities. PDMS-PEO stamps were fabricated using a silicon master stamp. Aqueous gold solution was introduced to PDMS-PEO substrate resulting in a sparse 2D array of gold nanoparticles. Spectra was obtained in episcopic and diascopic mode in areas with differing
amounts of sparsity.
 PEO block copolymer's hydrophilic nature helped deposition of gold nanoparticles in a sparse array. Statistical analysis of number of optically active nodes in the array shows that couple lattice resonances are measureable with as few as five optically active nodes of particles on average.
 Future Work Develop numerical technique to determine how empty nodes effect the array coupling. Explore thermal effects due to the sparse array.