Measure Nonlinearity Parameters of Graphene Via Z-Scan

Graduate School & International Education

Microelectronics-Photonics

Student: Thekrayat AlAbdulaal

Nanoscience & Engineering

Degree: Ph.D., December 2016 Major Professor: Dr. Gregory J. Salamo

Approach

system.

Films

Background

- Nonlinear optical (NLO) properties play significant roles in optical communication and other optical signal applications.
- Graphene has illustrated excellent NLO properties, including reverse saturable absorption, two-photon absorption, four-wave mixing, and saturable absorbers.
- Z-Scan is a standard technique to define the sign and the magnitude of nonlinear properties due to its setup simplicity, data sensitivity, and analysis easy.

Innovation

Develop high efficient nonlinear optical coating devices, based on reduced graphene oxide materials

Key Results

- The value of (β) for nonfunctionalized graphene is around 5.58 *10-2 and 6.42 *10-2 cm/W when deposited with gold nanorods.
- Thermo optical coefficient for NFG was found to be 0.772x10-6 /C while for Au-NFG was 4.04 x 10-4 /C.

3. Linear & Nonlinear Optical measurements

- UV-1700 Shimadzu spectrometer, AFM, and Raman Spectroscopy are used to define the sample morphology.
- Measure nonlinear refractive index, thermos optical coefficient, and nonlinear absorption coefficients of Graphene samples with and without gold nanorods.

Conclusions & Future Work

- Demonstrate amazing nonlinear thermo-optical properties.
- Graphene has potential for broad nonlinear optical applications, such as optical communication, optical limiting, and optical data storage.
- Explain the result and publish NLO experimental data.
- Decorate graphene with gold nanorods, measure the NLO, and understand the physics.
- Decorated graphene with gold particles enhances the NLO properties.