Defect Characterization of HVPE GaN Substrates

Graduate School & International Education Microelectronics-Photonics

ARKANSAS

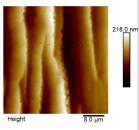
Degree: M.S., May 2019 Student: Alaa Kawagy Major Professor: Dr. Morgan Ware

Nanoscience & Engineering

Background/Relevance

- Gallium nitride (GaN) is a semiconductor material that has desirable physical properties such as wide bandgap energy, and large breakdown field making it useful for high-performance semiconductor devices for high efficiency.
- Recent availability of low cost substrates grown by HVPE creates opportunities for growth in research and production, however there are large scale macro defects on these substrates.

Innovation


GaN substrates will be characterized by different microscopes. The GaN substrate and buffer will be characterized by TEM.

Key Results

- Large steps and small pits were detected in unintentionally doped GaN substrates.
- Macro-pits were detected in semiinsulating GaN substrates.
- GaN substrates suffer from screw and mixed dislocations.
- Optical properties of GaN are not affected by defects in the substrates
- GaN buffer layer on GaN substrates has the same defect that found in the substrates.

Macro-pits

Step bunching

Approach

- Studying the defects of HVPE GaN substrates.
- Studying the substrates by using atomic force microscopy (AFM).
- Studying the substrate structural properties by X-ray diffraction to know the dislocation densities.
- Characterize the substrate by optical microscope and SEM.
- Studying the growth of GaN buffers on the GaN substrate by transmission electron microscopy (TEM) at 265Kx to 340Kx magnification.

Conclusions

- GaN suffers from small and large defect densities.
- The received GaN substrates vary in defect density, and some of them are good and some of them are not.
- The defects in the substrates affect the subsequent growth.

Future Work

- Using Photoluminescence for studying the GaN substrates.
- Using TEM for studying the grown GaN buffers on the GaN substrates.

Alaa Kawagy is supported by the King Abdullah Scholarship Program.